
Distributed BDD-based BMC for the Verification of
Multi-Agent Systems

Andrew V. Jones Alessio Lomuscio
Department of Computing

Imperial College London, UK

{andrew.jones,a.lomuscio}@imperial.ac.uk

ABSTRACT
We present a method of distributed model checking of multi-
agent systems specified by a branching-time temporal-epistemic
logic. We introduce a serial algorithm, central to the dis-
tributed approach, for combining binary decision diagrams
with bounded model checking. The algorithm is based on
a notion of “seed states” to allow for state-space partition-
ing. Exploring individual partitions displays benefits arising
from the verification of partial state-spaces. When verifying
both an industrial model and a scalable benchmark sce-
nario the serial bounded technique was found to be effective.
Results for the distributed technique demonstrate that it
out-performs the sequential approach for falsifiable formulae.
Experimental data indicates that increasing the number of
hosts improves verification efficiency.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation—Model checking

General Terms
Verification

Keywords
Verification of MAS, Distributed Model Checking, Bounded
Model Checking, Binary Decision Diagrams

1. INTRODUCTION
Multi-agent systems (MAS) are distributed systems in

which agents, based on sophisticated communicating pro-
cesses, exhibit autonomous behaviour. Recent research in
the verification of multi-agent systems has highlighted their
use in ensuring correct functionality in scenarios ranging
from e-Business and web services to security protocols.

Symbolic model checking [19] is a powerful technique for
the verification of reactive systems. Traditionally, such ap-
proaches use binary decision diagrams (BDDs) to represent
the model. However, even BDDs cannot overcome the state
space explosion problem.
Cite as: Distributed BDD-based BMC for the Verification of Multi-
Agent Systems, Andrew V. Jones and Alessio Lomuscio, Proc. of 9th
Int. Conf. on Autonomous Agents and Multiagent Systems
(AAMAS 2010), van der Hoek, Kaminka, Lespérance, Luck and Sen
(eds.), May, 10–14, 2010, Toronto, Canada, pp.�
Copyright c© 2010, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

There has been significant research into applying symbolic
model checking to the realm of multi-agent systems [16, 23].
Unfortunately, due to the highly autonomous and decoupled
nature of multi-agent systems, the resulting BDD represent-
ing the reachable states can still exceed the feasible limits of
what can be verified.

Bounded model checking (BMC) [5] attempts to alleviate
this difficulty by considering only a truncated model up to
a specific depth. Traditionally, bounded model checking
looks at the possible falsification of a universally quantified
formula, via a translation of the model and the negation of the
property, to the Boolean satisfiability problem (SAT). BMC
for MAS, via a translation to SAT, has been investigated
in [22]; an experimental implementation is presented in [15].

In this paper we present a method of bounded model
checking for the epistemic logic CTLK [22]. The approach
uses BDDs to represent the reachable state space [11, 19],
rather than a translation of the problem to SAT (Section 3).
We demonstrate how to extend this technique to support
agent verification in a distributed environment (Section 3.2).
We implement these techniques into an existing model checker
for multi-agent systems, mcmas (Section 4). For a constructive
evaluation of our methods, when compared with the existing
implementation (Section 5.1), we use an industrial use-case
(Section 5.2) and provide a scalable benchmark scenario
(Section 5.3).

Although the serial and distributed techniques place limi-
tations upon the grammar, both approaches are sound and
complete.

Related Work. In 2001 Copty et al. [9] investigated the
possibility of using BDDs rather than SAT when performing
bounded model checking. They adapted Intel’s conventional
BDD-based model checker Forecast to perform bounded
model checking. Their method attempts to check an invariant
property through a reachability check of a target error set,
representing the complement of the given property. Much
like SAT-based BMC, their algorithm only checks up to a
given depth and terminates with an incomplete result if the
intersection is not satisfied.

The ideas presented by Copty et al. were further extended
by Cabodi et al. [6]. They discuss the idea of performing
not only forward bounded model checking, but also working
backwards from the error set using the state pre-image func-
tion. Additionally, their algorithm allows for completeness
by taking the fixed point of states into consideration.

The model checker NuSMV [7] attempts to provide a method
for “early falsification”, again of only invariant properties.

675

675-682

The approach taken by this verifier is to check, at each
successive depth, if the reachable states are a subset of the
states in which the property holds.

Both these approaches place a severe limitation upon the
various properties that can be checked. It should be immedi-
ately obvious that the full grammar of expressible properties
in a temporal-epistemic logic cannot be expressed by simply
providing the model checker with a single state and then at-
tempting a reachability check. Restriction to simple invariant
properties exhibits the same issues.

In addition to the work discussed above, Iyer et al. [12]
propose a grid-based method for bounded model checking
by finding various “candidate deep reachable states”, which
can be used as seeds from which to run parallel SAT solvers.
They argue that, when starting SAT-based BMC at a deeper
initial state, it is possible to explore further into the model,
as well as to locate errors that may not be detected by
existing methods. Their method uses partitioned BDDs and
under-approximation to construct a partitioned state space,
such that generating the seeds remains tractable, but this
is achieved at the expense of completeness [13]. Seed states
are written as conjunctive normal form clauses at regular
intervals and are subsequently used to start multiple parallel
SAT-based BMC instances.

2. PRELIMINARIES

2.1 Temporal-Epistemic Interpreted Systems
The Interpreted Systems formalism [10] is an established

semantics for multi-agent systems.
Assume that A = {1, . . . , n} represents the set of n agents

in the system, as well as the environment e modelling where
all of the agents “live”.

Each agent i ∈ A has a set of local states Li and a reper-
toire of actions Acti that it can perform. The protocol
function Pi : Li → 2Acti governs which actions can be per-
formed by an agent in a given local state. Assume that the
environment is modelled in a similar way (i.e., by associating
the sets Le, Acte and Pe with the same meaning).

The set of joint actions Act ⊆ Act1 × · · · × Actn × Acte
represents actions that are performed “jointly” (i.e., syn-
chronously - all agents and the environment perform their
respective action at the same time). An evolution function
τi : Li × Act → Li, i ∈ A, specifies how agents evolve
from one state to another, depending on the joint action
performed by the system as a whole (τe, respectively, for the
environment).

The set of all possible global states G ⊆ L1×· · ·×Ln×Le
is a subset of the Cartesian product of the local states for
all agents in the system. A global state (l1, . . . , ln, le) ∈ G
represents an instantaneous configuration of the system.

The transition relation T ⊆ G × Act × G defines the
temporal evolution of the system. Two global states g and g′,
(g, g′) ∈ T iff there exists a joint action a1, . . . , an, such that
for all i ∈ A, ai ∈ Pi(li(g)) and τi(li(g), a1, . . . , an) = li(g′).
We assume seriality of this relation (i.e., every global state
has at least one successor).

Given an initial state ι ∈ G the protocols for each agent and
the global transition function generate a (potentially infinite)
structure representing all of the possible computations of
the system. A path π = (ι, g1, . . .) is an infinite sequence of
global states such that ∀k≥0 (gk, gk+1) ∈ T (for finite paths,
k is bounded accordingly). π(k) is the kth global state of

the path π, whilst Π(g) is the set of all paths starting at the
given state (g ∈ G).

The function li : G→ Li is a projection of an individual
agent’s local state from a given global state. The epistemic
accessibility relation ∼i ⊆ G×G represents that two global
states are indistinguishable for that agent. Formally, (g, g′) ∈
∼i iff li(g) = li(g′).

A model of an interpreted systemMIS is a tuple (G, ι,T,
∼1, . . . ,∼n,V) where G is the set of reachable states accessi-
ble from ι via T, and V is a mapping of global states to the
propositional variables that hold at that state V : G→ 2PV .

The models of interpreted systems can be used to reason
about a branching-time temporal-epistemic logic. The logic
CTLK [22] is an enrichment of Computational Tree Logic
(CTL) [11], with modalities for knowledge. The language
CTLK is defined in terms of a countable set of propositional
variables PV = {p, q, . . .}, i ∈ A, and using the following
syntax:

ϕ,ψ ::= p | ¬ϕ | ϕ ∨ ψ | EXϕ | EGϕ | E [ϕUψ] | Kiϕ
The epistemic modality Kiϕ is read as “agent i considers
it possible that ϕ”. We define EFϕ as E [trueUϕ]. The du-
als are as follows: AXϕ def= ¬EX¬ϕ, AFϕ def= ¬EG¬ϕ and
AGϕ

def= ¬EF¬ϕ. A [ϕUψ] has the obvious semantics. The
dual of the epistemic modality for “possibility” is “knowl-
edge”; Kiϕ is defined as ¬Ki¬ϕ, and is read as “agent i
knows ϕ”. The temporal operators are read as usual [11].

We can define two fragments of CTLK: an existential
fragment ECTLK and a universal fragment ACTLK [22].
ECTLK places a restriction upon the syntax such that nega-
tion can only be applied to elements of PV (i.e., in the
BNF above ¬ϕ is replaced with ¬p). The universal frag-
ment contains the negations of all the formulae in ECTLK
(i.e., ACTLK = {¬ϕ | ϕ ∈ ECTLK}). It can be seen that
ACTLK contains formulae of the kind AXϕ, AFϕ, AGϕ
A [ϕUψ] and Kiϕ.

Given a model of an interpreted system MIS , a global
state g and two CTLK formulae ϕ and ψ, satisfaction of ϕ and
ψ at a global state g in a modelMIS , writtenMIS , g � ϕ
(or, for brevity, g � ϕ), is defined as follows:

g � p iff p ∈ V(g)
g � ¬ϕ iff g � ϕ
g � ϕ ∨ ψ iff (g � ϕ) or (g � ψ)
g � ϕ ∧ ψ iff (g � ϕ) and (g � ψ)
g � EXϕ iff (∃π = Π(g)) π(1) � ϕ
g � EGϕ iff (∃π = Π(g)) ∀m≥0 [π(m) � ϕ]
g � E [ϕUψ] iff (∃π = Π(g)) ∃m≥0

[π(m) � ψ and ∀0≤j<m π(j) � ϕ]
g � Kiϕ iff ∃g′ ∈ G, g ∼i g′ and g′ � ϕ

A CTLK formula ϕ is valid in a modelMIS = (G, ι,T,∼1,
. . . ,∼n, V) iffMIS , ι � ϕ, i.e., ϕ is true in the initial state
of a model.

2.2 mcmas – A Model Checker for Multi-Agent
Systems

mcmas [16] is a symbolic model checker for multi-agent sys-
tems. It implements ordered binary decision diagram-based
algorithms for the verification of temporal-epistemic formu-
lae on interpreted systems. It is written in C++ and uses
the CUDD [24] library that provides BDD data structures,
asynchronous variable reordering and garbage collection.

676

mcmas implements the standard fixed point methods [11] in
the algorithm Satctlk [23]. This calculates the satisfiability
set of states �ϕ�, i.e., the set of reachable states in which ϕ
holds. mcmas’s algorithm Satk symbolically calculates the
satisfiability set for formulae of the kind Kiϕ.

To check the validity of a formula ϕ mcmas constructs
(and checks the satisfiability of) the formula ι→ ϕ, where ι
represents a propositional atom that holds only in the initial
states of the model. If �ι → ϕ� is equivalent to the set of
reachable states, then the formula ϕ holds at the initial states
of the model. Hence it is valid.

3. BDD-BASED BMC
The method we propose, as outlined in Algorithm 1, ex-

tends the algorithms presented in [23]. It attempts to perform
falsification of an ACTLK property (line 4) at every depth
of incremental state space generation (line 7).

Algorithm 1 BDD-BMC(ψ : ACTLK Formula, I : Ini-

tial State, Trans : Transition Relation) : Boolean

1: ϕ← ¬ψ {ϕ : ECTLK Formula}
2: Reach← I {Reach : BDD}
3: while True do
4: if �ι→ ϕ� = Reach then
5: return False

{Counterexample to ACTLK formula found}
6: end if
7: Reach← Reach ∨ (Reach ∧ Trans)
8: if Reach Unchanged then
9: break {Fixed point reached}

10: end if
11: end while
12: return �ι→ ψ� = Reach

The technique put forward differs from Cabodi and Copty
([6] and [9], respectively) in one major respect. While [6, 9]
merely performed a set intersection between either the reach
set or the frontier set of states with a target error state, the
algorithm proposed performs a full satisfiability check on the
current reachable state space at the current BMC depth.

The algorithm presented has two “exit” points: lines 5 and
12. Line 5 encodes that, upon discovery of a counterexample
to the ACTLK formula, the construction of the reachable
states is stopped. The second exit point (line 12) is only
accessible via a break in the loop (line 9), the condition
detecting a fixed point in the construction of the state space.

3.1 Symbolic Epistemic Possibility
Although one requirement of Kripke models is that the

transition relation should be serial, the current fixed point
methods for CTL (see [11]) are correct even when using non-
serial transition relations. Currently mcmas only supports
the “box” modality Kiϕ. To calculate the satisfiability set
(�ϕ�) for the entire grammar of ECTLK formulae we require
an extension of mcmas to provide a symbolic method for
Kiϕ. One approach could be to use the dual of Ki and the
existing Satk method [23], although this would be inefficient.
We extend the original algorithm Satctlk with a method for
symbolic calculation of Kiϕ, shown in Algorithm 2. We refer
to this extension as Sat

ctlk
.

The function pre
k

returns the set of all states that are
epistemically accessible for the given agent i; i.e., the set of

Algorithm 2 Sat
k
(ϕ : Formula, i : Agent) : set of

State

1: X← Sat
ctlk

(ϕ)
2: Y← pre

k
(X, i)

3: return Y

all global states in which the local state of agent i is invariant.
It can be seen that the algorithm is correct, given the obvious
parallels to Satex (see [11]).

3.2 Distributed BDD-based BMC
We take inspiration from the work of Iyer et al. [12, 13]

to develop an extension to mcmas and a Java framework to
support distributed bounded model checking. Similarly to
the original BDD-based BMC approaches, we focus only on
invariant properties – those that have AG as the top most
connective in the parse tree. We also restrict the grammar
such that epistemic sub-formulae can only be defined with
non-temporal formulae (i.e., conjunctions, disjunctions and
negations of atoms) beneath the modality Ki. The algorithm
works in three main stages:

1. Fixed-Depth BDD-based BMC. Initially our original
algorithm is used to perform bounded model checking
up to a fixed depth.

2. Seed State Generation. If the ACTLK property is
not falsifiable up to the fixed depth, then every state
(“seed”) on the fringe of the current set of reachable
states is saved to the file using the DDDMP package [3].
The satisfiability set for the non-temporal sub-formulae
beneath each Ki is also saved (e.g., �p� for Ki p).

3. Distributed Parallel BDD-based BMC. Finally, concur-
rent mcmas BMC instances are started on different hosts
for each seed state (iteratively, where the number of
seeds is greater than the number of hosts).

To allow for completeness of epistemic sub-formulae, if the
fixed point is reached for an individual seed state, that host
will then load �p� (see above) from disk and perform one
final satisfiability check with this enlarged reach set.

3.2.1 Correctness of Distributed BMC
When we restrict the grammar of expressible properties

as stated above (i.e., invariant formulae with non-temporal
epistemic sub-formulae), the approach of partial state space
evaluation used in the method of distributed bounded model
checking is both sound and complete. It is sound because
only valid conclusions can be derived, i.e., a counterexample
found from a seed state is a valid counterexample in the full
model. It is complete because all valid conclusions can be
derived, i.e., when a counterexample cannot be found from
a seed state, one does not exist in the full model.

Proposition 1. Seeded bounded model checking is sound
for AGϕ.

Proof. Through the construction of the seed states every
seed state is reachable from the initial state in the model.
Finding a counterexample from this seed state means that
there exists a path from that state to another in which ϕ
does not hold (i.e., EF¬ϕ holds in the seed state). As such
there exists a path in the full model that starts at the initial

677

state, passes through the seed state and reaches the error
state. Therefore, from the semantics of CTLK, we also have
EF¬ϕ in the initial state (the union of the sub-model from
the seed and the path to that seed is a valid sub-model).
For epistemic sub-formulae this means that the required
epistemically-related states are found from the current seed,
or in �p� if the fixed point has been reached.

Proposition 2. Seeded bounded model checking is com-
plete for AGϕ.

Proof. If the truncated model up to the depth at which
the seed states were generated could not satisfy EF¬ϕ, and
neither could any of the partial state spaces starting from
each individual seed, this means that there does not exist a
reachable state in which ϕ does not hold. As such, from the
semantics of CTLK, we do not have a path in any part of
the model that satisfies EF¬ϕ. The union of all seeded sub-
models and the initial fixed-depth model is the model itself.
Therefore, AGϕ is valid in the model. Due to the persistence
of �p� we know that all possibly epistemically-related states
have been included when performing Sat

k
.

4. IMPLEMENTATION
This section includes a description of the modifications

made to mcmas release 0.9.7.1 to support both bounded and
distributed model checking. A release of this branch is
available from [2].

4.1 BDD-Based BMC
In the implementation we restrict mcmas to allow only

for the verification of properties specified in either ACTLK
or ECTLK. After parsing the model we construct a list of
tuples (ϕ,ψ), where ϕ is the originally specified formula. For
ACTLK ψ = ¬ϕ; for ECTLK ψ = ϕ.

We implemented the method check_formulae_BMC that
is called at every depth of state space exploration. The
method loops over the aforementioned list and removes the
tuples for which ψ can be satisfied (i.e., for an ACTLK ϕ a
counterexample can be found). State space generation only
continues to a deeper depth if there still exist formulae to
be verified (i.e., the list is not empty).

4.2 Symbolic Epistemic Possibility
To create a BDD representing the local state for a given

agent we construct an expression consisting of the represen-
tation of local states of every other agent through the conjunc-
tion of their variables. The CUDD function ExistAbstract [1]
is then used to quantify existentially this expression from
the BDD representing �ϕ�. The resulting BDD represents
only the local state for the agent whose knowledge we wish
to check. This can be used to identify the global states for
which the local state is invariant from the global states in
which ϕ holds.

4.3 Distributed BDD-based BMC
Using Java we implemented a framework (included in

our experimental release [2]) for distributing the verifica-
tion process. It has two types of instance: “Master” and
“Slave”. “Master” represents the initial instance that performs
fixed-depth BMC, after which this instance becomes a “co-
ordination” node. “Slave” instances are those that perform
full BMC (until a counterexample is found or a fixed point
is reached) from a given seed state.

When a slave instance returns false the master instance
terminates the verification on all other slave instances; al-
ternatively, when a slave returns true it is allocated another
seed. This process continues until all seeds have been ex-
hausted (AGϕ is true) or a counterexample is found (AGϕ
is false).

We extended mcmas’s syntax checking phase to enforce the
restriction upon the grammar, as specified in Section 3.2.

5. EVALUATION
This section presents an evaluation of the BDD-based

BMC implementation, followed by the distributed extension.
The following section describes the hardware and software
configuration that we used for verification. Initially (§ 5.2)
we benchmark BMC against the original, unmodified, imple-
mentation in a use-case scenario taken from industry – the
“software development” model. In Section 5.3 we present a
further scalable scenario—the “faulty train gate controller”
model—that allows for a more critical evaluation of the sys-
tem. To conclude, in Section 5.4 we evaluate the distributed
implementation compared to the serial BMC approach.

5.1 Hardware and Software
The machines used for the following evaluation were dual

core PCs, each with 4 GiB of memory and an Intel Core
2 Duo clocked at 3.00 GHz, with a 4096 KiB cache. The
machines ran 32-bit Ubuntu Linux 8.04.2, with a vanilla
2.6.24-19-generic kernel and glibc 2.7. The modified mcmas
build was linked against release 2.4.1 of the CUDD library
and version 2.0.3 of the DDDMP package. The seed states
were saved to the networked file system mounted on a server
with an XFS file system, using a 4 KiB block size (in a RAID
configuration). The network between the machines and the
file server ran at 1 Gb/s. All experiments were performed
four times, with the results presented here being the average
across all four runs.

5.1.1 BDD Library Settings
In a similar way to the work presented in [20, 21], and to

provide fair benchmarks, we turned off CUDD’s asynchronous
variable reordering and garbage collection. This was done to
evaluate the approach, rather than benchmarking a specific
implementation.

For instance, if CUDD were to perform asynchronous
reordering more frequently during state space generation,
this could cause a sub-optimal variable reordering to be
selected. Such an ordering could be preferential for the
current reach set, but might be an adverse ordering for
the reach set generated in the next state space generation
iteration. CUDD only allows a certain time per-attempt to
find an optimal reordering and, if one is not found, does not
change the ordering.

We wanted to avoid assessing the benefits that such an
implementation gains from the optimisations (such as auto-
matic variable reordering) arising from its use of an auxiliary
library.

5.2 The Software Development Model
In [17, 18] Lomuscio et al. present a model based on the

composition of services revolving around a governing contract.
Their model contains seven agents: “a principal software
provider (PSP), a software provider (SP), a software client

678

Table 1: ACTLK “Software Development” Properties
ϕsd1 AG (PSP_Green→ KPSP (AF (PSP_End)))
ϕsd2 KPSP (A [All_Green U Software_Delivered])

Table 2: ECTLK “Software Development” Properties
ϕsd3 E [Client_Green U Software_Delivered]
ϕsd4 E [(PSP_Green ∧ ServiceProvider_Green) U (Software_Integrated ∧ EF (Software_Tested))]
ϕsd5 E [Client_Green U (E [(Client_Green ∧ Software_Delivered) U (¬Client_Green)])]

(C), an insurance company (I), a testing agency (T), a
hardware supplier (H) and a technical expert (E).”

Their idea is as follows: The client (C) desires for a piece of
software to be developed and, subsequently, for the technical
expert (E) to deploy this software upon hardware supplied
by H. Two parties provide the software: the principle (PSP)
and non-principle (SP) software providers. The PSP per-
forms software integration of its software with SP ’s when a
deliverable is made, which it then sends to the testing agency
(T) for testing. If the software passes testing, it is given
to the insurance company (I) for the provision of software
insurance. The software is finally handed over to the E, who
deploys it on the H.

The description of the model as found in [17, 18] defines
a protocol allowing for changes to software and negotiation
between contractual parties. It should be noted that, if any
of the above parties errantly deviate from this protocol (e.g.,
C requires software changes that either PSP or SP do not
agree with, or the software fails in testing too many times),
the contract is violated.

Various properties for the software development model can
be seen in Tables 1 and 2; the former shows properties in
ACTLK, the latter in ECTLK. When an agent is said to
be in a “green” state, this represents that agent being in
compliance with the contract. For instance, PSP_Green
represents that the PSP is compliant, whilst All_Green
represents that all of the parties are compliant (i.e., the con-
junction of i_Green holds for all parties). The other atoms
take their intuitive meanings (e.g., Software_Integrated
means that the software has been successfully integrated
and Software_Delivered holds only in states for which the
software has been delivered).

Specifications
ACTLK properties from Table 1:

ϕsd1 – Whenever the PSP is in compliance (i.e., it is in a
green state) it knows that the contract will eventually
be successfully fulfilled.

ϕsd2 – PSP knows that all other parties are in compliance
until the software is delivered.

ECTLK properties from Table 2:

ϕsd3 – There exists a path in which the Client (C) is always
in compliance until he receives the software.

ϕsd4 – In paths where the PSP and SP are always in com-
pliance the software can eventually be integrated and
tested.

Table 3: Software Development Results
% BMC of Conventional

Formula Memory Time States Depth

ϕsd1 1.604 0.221 0.007 0.000
ϕsd2 1.665 0.215 0.007 0.000

ϕsd3 32.305 10.198 16.725 79.167
ϕsd4 12.246 4.152 3.129 59.722
ϕsd5 2.655 0.389 0.420 8.333

ϕsd5 – There exists a trace through the model where the
client is always in compliance until the software is
delivered and before the client enters a violation.

Within this model all of the ACTLK properties are fal-
sifiable, whilst all of the ECTLK ones are satisfiable. The
reader is referred to [17, 18] for explanations of the valuations
of these formulae.

5.2.1 Evaluation
A comparative evaluation of our BMC implementation

and the conventional model checking technique can be seen
in Table 3. Each cell represents the value BMC required, as
a percentage of exploring the whole model.

From the ACTLK results it can be seen that BMC appears
to explore a negligible portion of the model. This arises from
the fact that BMC can falsify the formulae in the initial state
and so does not have to explore the model any further. This is
caused by the transition relation being reflexive on the initial
state and ¬ϕ holding in this state. As such EG¬ϕ holds
in the initial state, whilst the formula being verified (e.g.,
A [ψUϕ]) requires AFϕ to hold. This is a known advantage
of the BMC technique.

The ECTLK results highlight the fact that, the deeper
into the model we explore, the greater the memory required.
For instance, ϕsd3 shows that we require 32% of the memory
used by the conventional technique to represent 80% of the
model (68% of the memory is used to represent the final 20%
of the model).

It can be seen that BDD-based BMC can out-perform stan-
dard BDD verification. Although these results demonstrate
that the method can be effective, the formulae being checked
are those for which we would expect BMC to perform best
(i.e., falsifiable ACTLK/satisfiable ECTLK formulae).

5.3 A Scalable Multi-Agent System
Whilst the evaluation of a real benchmark from industry

is of interest, to evaluate the technique further we analyse a
scalable model. The following model has satisfiable ACTLK

679

properties and it is also possible to vary the depth of the
model to be explored before the “early termination” condition
of the BMC algorithm is reached.

We adapted the benchmark scenario of the “Train Gate
Controller”, as presented by Alur et al. [4] and modified
by Wooldridge et al. [25] and Kacprzak et al. [14]. The
model involves two circular train tracks, each with a train
travelling in a different direction. At a particular part of
the track the trains must pass through a tunnel that can
only accommodate a single train. At the point at which the
tracks merge there is a controller, which controls signals for
entry to the tunnel. If a train sees a green light it knows it
is safe to enter the tunnel. The local states for each agent,
as per the interpreted systems semantics, can be defined
as follows: LTrain1 = LTrain2 = {Away,Wait, Tunnel} and
LController = {Red, Green}. The protocol is omitted.

Our interpretation of the model is unique in that we adapt
the trains to display faults under certain circumstances. Us-
ing mcmas’s bounded integer type we extend each train with
a “service counter” (with a maximum value) and a “breaking
depth”. The service counter is incremented each time a train
performs an action; when this counter reaches the maximum
value the train is serviced, resetting the counter to zero. Once
the service counter exceeds the breaking depth, the trains
may perform a non-deterministic break action whilst in the
tunnel. The controller is also changed such that it waits two
evolutions between entering the Red state and changing back
to the Green state.

We defined three types of trains: for the first, once the
break action has been performed the train remains in the
tunnel perpetually; when the second type performs a break
action the train is delayed from leaving for that turn (but
can perform an infinite number of break actions); the final
(working) type has all of the break actions removed.

The specifications in Table 4 are false in a model contain-
ing type-1 or type-2 trains but are true in one with type-3
(working) trains. The formulae have been given with respect
to a model containing two trains but they can easily be
adapted to refer to more trains in a larger model.

We define the propositional atom “Traini_in_tunnel”
(i ∈ 1, 2) to hold iff train i is currently inside the tunnel (i.e.,
the local state for that train is Tunnel).
ϕtgc1 states that Train1 is infinitely often not in the

tunnel. ϕtgc2 expresses a mutual exclusion property in the
model: two trains never occupy the tunnel at the same time.
ϕtgc3 represents that, whenever a train is in the tunnel,
it knows that the other train is not. ϕtgc4 represents that
trains are aware that they have exclusive access to the tunnel.
Finally, ϕtgc5 indicates that trains are aware that there is a
gap of at least one transition between the first train leaving
and the next entering.

The formulae in Table 4 can be parameterised in a similar
way to those presented by Kacprzak et al. [14]. For example,
for a system composed of N trains, a parameterised ϕtgc3
can be seen in Figure 1. This takes the intuitive meaning:
“when a train is in the tunnel it knows that no other train in
the whole system is in the tunnel”.

5.3.1 Evaluation
The memory requirement of bounded model checking with

respect to the original technique is shown in Figure 2, whilst
Figure 3 shows the same requirement for time. Both figures
illustrate results for various complexities of formulae, whilst

Figure 2: Memory required to verify various formu-
lae.

0%

20%

40%

60%

80%

100%

120%

140%

4 8 12 16 working

%
of

M
em

or
y

U
se

d

Breaking Threshold of Train

Bounded Model Checking Memory Usage

ϕtgc1
ϕtgc2

ϕtgc3(2)
ϕtgc5(2)

100%

Figure 3: Time used to verify various formulae.

0%

20%

40%

60%

80%

100%

120%

140%

4 8 12 16 working

%
of

T
im

e
R

eq
ui

re
d

Breaking Threshold of Train

Bounded Model Checking Time Usage

ϕtgc1
ϕtgc2

ϕtgc3(2)
ϕtgc5(2)

100%

the breaking threshold of the train is directly proportional
to the BMC depth (i.e., iterations of Algorithm 1) required
to falsify the formulae. This depth affects the number of
reachable states and the size of the BDD representing them.

Both graphs demonstrate the advantage of the BDD-based
BMC implementation over the current release. For instance,
in Figure 2, at a breaking depth of 4, checking the formulae
requires, on average, less than 20% of the memory used for
full verification.

In Figure 2 it can be seen that there is a marginal overhead
when checking ϕtgc5 at a deep breaking depth, but this
overhead appears to be less in the working model. The cause
of this is that the number of state space generation iterations
required to find a counterexample at the deepest breaking
bound is greater than that for reaching a fixed point in the
working model.

5.3.2 Counterexamples
The approach adopted by traditional SAT-based BMC

“finds counterexamples of minimal length” [5]. A comparison
of the length of counterexamples generated between mcmas’s
BMC implementation and the original implementation can
be seen in Table 5. These counterexamples were generated
for various properties in a model with two type-2 trains, a
maximum counter value of 20 and a breaking depth of 10.

For the first property it can be seen that, although the new

680

Table 4: Train Gate Controller Properties
ϕtgc1 AG (AF (¬Train1_in_tunnel))
ϕtgc2 AG (¬Train1_in_tunnel ∨ ¬Train2_in_tunnel)
ϕtgc3 AG (Train1_in_tunnel→ KTrain1 (¬Train2_in_tunnel))
ϕtgc4 AG (KTrain1 (¬Train1_in_tunnel ∨ ¬Train2_in_tunnel))
ϕtgc5 AG (Train1_in_tunnel→ KTrain1 (AX (¬Train2_in_tunnel)))

Figure 1: An example of possible parameterisation

AG

(
Train1_in_tunnel→ KTrain1

(
N∧
i=2

¬Traini_in_tunnel

))

Table 5: Length of counterexamples generated by
BMC and full verification.

Formula
Method ϕtgc1 ϕtgc2 ϕtgc3 ϕtgc4 ϕtgc5

Regular 25 17 4 4 12
BMC 13 16 4 4 fail

approach generates a shorter counterexample, it is still not
minimal. Length 10—the lowest number of joint actions that
must occur before the train can perform a break action—is
the shortest. mcmas follows the procedures for counterex-
ample generation as laid out in [8]. The results presented
demonstrate that these procedures can be suboptimal.

When attempting to generate a counterexample for ϕtgc5,
CUDD printed the string Unexpected Error and caused
mcmas to exit with a non-zero error code. We were able
to make mcmas generate a counterexample for this property
when performing BMC, but this required manual intervention
to cause mcmas to explore the model to a deeper depth than
required to falsify the property alone.

5.4 Evaluating Distributed BMC
Table 6 shows the results obtained from performing dis-

tributed bounded model checking on a model with 3 trains,
a maximum service counter of 7 and a breaking depth of
4. The table displays ratios comparing resource utilisation
of seeded BMC and BMC – a value greater (less) than 1
indicates a decrease (increase). Falsification of the parame-
terised version of ϕtgc3 was attempted (Fig. 1). The initial
fixed-depth BMC was performed to a depth of 4. We can
see, that when the property can be falsified, only having to
explore a partial state space is greatly favourable. Otherwise,
significant over-computation is required to explore each seed
to its respective fixed point.

The faulty train gate controller model is not ideal for
benchmarking the distributed aspects, due to the fact that it
is possible for the whole model to revert to the initial state,
as specified in the ISPL (due to the cyclical nature of the
model). This is illustrated by the ratio of states explored
in the Working model – exploring each seed to its fixed
point is the same as exploring the initial state to its fixed
point. We explore |G| × |seeds| states, where |G| is the total
number of global reachable states in the model and |seeds| is
the total number of seeds. This is further highlighted in the
memory ratio for the Working model – exploring all the
seeds requires more memory. This arises from using a seed
state as the initial state, which can then lead to a different
variable ordering and, subsequently, a larger BDD for the

Table 6: A comparison of seeded BMC vs. BMC for
a single master and 3 slaves (seed depth of 4).

Ratio
Model Memory Time States

Faulty 1.712 4.561 1.712
Working 0.884 0.005 0.003

Table 7: Ratios comparing time for seeded BMC vs.
BMC, for a varying number of slaves (seed depth of
3).

Hosts Ratio

2 0.016
4 0.031
6 0.044
8 0.057

reach set once a fixed point is reached.
Focusing on the model above, in which falsification is

not possible, Table 7 shows that increasing the number of
slave instances causes a decrease in the time required for the
verification process. Unlike the previous results, the initial
fixed-depth BMC was only performed to a depth of 3. This
table illustrates that increasing the number of hosts available
to the verification improves the efficiency of the method.

6. CONCLUSION
In this paper we have presented a method for performing

bounded model checking using binary decision diagrams, as
opposed to the conventional approach of a conversion of
the problem to the Boolean satisfiability problem. Experi-
ments investigating reasoning about the industrial use-case
“software development” model and the benchmark scenario
“faulty train gate controller” model show bounded model
checking to be the preferential approach when automatic
variable reordering is disabled. Results demonstrate that the
distributed method is an effective technique for harnessing
the resources available from multiple hosts in a networked
environment. For falsifiable formulae verification efficiency
is increased.

This work shows that the adaptation of existing BDD-
based model checkers to perform bounded model checking,
without significant re-engineering to support SAT, can be
fruitful. Not all symbolic model checkers use libraries that
provide automatic reordering but, for the ones that do, fur-
ther research needs to be undertaken to find optimal heuris-
tics to use when performing bounded model checking.

681

In addition, our future work aims to compare the im-
plementation presented here with the existing SAT-based
bounded model checker for multi-agent systems VerICS [15].
The method for distributing the verification process uses only
the temporal transition relation to build up the submodel
and, therefore, we intend to investigate how the epistemic
relations for each agent could be used in a similar way.

Acknowledgements. The work presented in this paper was
partially supported by the EPSRC through project E035655.

7. REFERENCES
[1] About CUDD: The U. Colorado BDD Package. http:

//www.ece.cmu.edu/~ee760/760docs/cuddv1.pdf.
[2] Distributed Bounded Model Checking Multi-Agent

Systems. http://code.google.com/p/dbmcmas/.
[3] The DDDMP Package. http://fmgroup.polito.it/

quer/research/tool/tool.htm.
[4] R. Alur, T. A. Henzinger, F. Y. C. Mang, S. Qadeer,

S. K. Rajamani, and S. Tasiran. MOCHA: User Manual.
In cMocha (Version 1.0.1) Documentation, 1998. http:
//mtc.epfl.ch/software-tools/mocha/doc/c-doc/.

[5] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic
Model Checking without BDDs. In Proceedings of the
5th International Conference on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS
’99), volume 1579 of LNCS, pages 193–207.
Springer-Verlag, 1999.

[6] G. Cabodi, P. Camurati, and S. Quer. Can BDDs
compete with SAT solvers on Bounded Model
Checking? In Proceedings of the 39th conference on
Design automation (DAC ’02), pages 117–122. ACM,
2002.

[7] A. Cimatti, E. M. Clarke, E. Giunchiglia,
F. Giunchiglia, M. Pistore, M. Roveri, R. Sebastiani,
and A. Tacchella. NuSMV2: An Open-Source Tool for
Symbolic Model Checking. In Proceedings of the 14th
International Conference on Computer Aided
Verification (CAV ’02), volume 2404 of LNCS, pages
359–364. Springer-Verlag, 2002.

[8] E. M. Clarke, S. Jha, Y. Lu, and H. Veith. Tree-Like
Counterexamples in Model Checking. In Proceedings of
the 17th Annual IEEE Symposium on Logic in
Computer Science (LICS ’02), pages 19–29. IEEE
Computer Society, 2002.

[9] F. Copty, L. Fix, R. Fraer, E. Giunchiglia, G. Kamhi,
A. Tacchella, and M. Y. Vardi. Benefits of Bounded
Model Checking at an Industrial Setting. In
Proceedings of the 13th International Conference on
Computer Aided Verification (CAV ’01), volume 2102
of LNCS, pages 436–453. Springer-Verlag, 2001.

[10] R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi.
Reasoning About Knowledge. MIT Press, 1995.

[11] M. Huth and M. Ryan. Logic in Computer Science:
Modelling and Reasoning About Systems. Cambridge
University Press, 2004.

[12] S. Iyer, J. Jain, D. Sahoo, and E. A. Emerson.
Under-approximation Heuristics for Grid-based
Bounded Model Checking. Electronic Notes in
Theoretical Computer Science, 135(2):31–46, 2006.
Post-Proceedings of the 4th International Workshop on
Parallel and Distributed Methods in Verification

(PDMC 2005).
[13] S. K. Iyer, J. Jain, M. R. Prasad, D. Sahoo, and

T. Sidle. Error Detection Using BMC in a Parallel
Environment. In Proceedings of the 13th International
Conference on Correct Hardware Design and
Verification Methods (CHARME ’05), volume 3725 of
LNCS, pages 354–358. Springer-Verlag, 2005.

[14] M. Kacprzak, A. L. T. Lasica, W. Penczek, and
M. Szreter. Verifying Multiagent systems via
Unbounded Model Checking. In Proceedings of the 3rd
NASA Workshop on Formal Approaches to
Agent-Based Systems (FAABS III), volume 3228 of
LNCS, pages 189–212. Springer-Verlag, 2004.

[15] M. Kacprzak, W. Nabialek, A. Niewiadomski,
W. Penczek, A. Pólrola, M. Szreter, B. Wozna, and
A. Zbrzezny. VerICS 2007 - A Model Checker for
Knowledge and Real-Time. Fundamenta Informaticae,
85(1-4):313–328, 2008.

[16] A. Lomuscio, H. Qu, and F. Raimondi. MCMAS: A
Model Checker for the Verification of Multi-Agent
Systems. In Proceedings of the 21st International
Conference on Computer Aided Verification (CAV ’09),
volume 5643 of LNCS, pages 682–688. Springer-Verlag,
2009.

[17] A. Lomuscio, H. Qu, and M. Solanki. Towards Verifying
Compliance in Agent-Based Web Service Compositions.
In Proceedings of The Seventh International Joint
Conference on Autonomous Agents and Multi-agent
systems (AAMAS ’08), pages 265–272. ACM, 2008.

[18] A. Lomuscio, H. Qu, and M. Solanki. Towards
Verifying Contract Regulated Service Composition. In
Proceedings of the 2008 IEEE International Conference
on Web Services (ICWS ’08), pages 254–261. IEEE
Computer Society, 2008.

[19] K. L. McMillan. Symbolic Model Checking: An
Approach to the State Explosion Problem. PhD thesis,
Carnegie Mellon University, 1992.

[20] P. K. Nalla. Efficient Distributed Bounded Property
Checking. PhD thesis, Wilhelm-Schickard-Institut für
Informatik, 2008.

[21] P. K. Nalla, R. J. Weiss, P. M. Peranandam, J. Ruf,
T. Kropf, and W. Rosenstiel. Distributed Symbolic
Bounded Property Checking. Electronic Notes in
Theoretical Computer Science, 135(2):47–63, 2006.

[22] W. Penczek and A. Lomuscio. Verifying Epistemic
Properties of Multi-agent Systems via Bounded Model
Checking. Fundamenta Informaticae, 55(2):167–185,
2002.

[23] F. Raimondi and A. Lomuscio. Towards Symbolic
Model Checking for Multi-agent Systems via OBDDs.
In Proceedings of the 3rd NASA Workshop on Formal
Approaches to Agent-Based Systems (FAABS III),
volume 3228 of LNCS, pages 213–221. Springer-Verlag,
2004.

[24] F. Somenzi. CUDD: CU Decision Diagram Package
Release 2.4.1.
http://vlsi.colorado.edu/~fabio/CUDD/, May 2005.

[25] W. van der Hoek and M. Wooldridge. Tractable
Multiagent Planning for Epistemic Goals. In
Proceedings of the First International Joint Conference
on Autonomous Agents and Multiagent Systems
(AAMAS ’02), pages 1167–1174. ACM, 2002.

682

